Product Description
Product: Stub axle unbraked agricultural trailer SA-0067
Product Parameters | ||||||||||||||||
Reference | square | Studs (qty/Ø) | PCD | Bearings | Axle load | Max.Overhang | Technical data | |||||||||
A | B | 25-30km/h | 40km/h | 60km/h | L | L’ | C | E | F | |||||||
mm | mm | mm | 1 Axle | 2 Axles | 1 Axle | 2 Axles | 1 Axle | 2 Axles | mm | mm | mm | mm | ||||
354F | 35 | 4/14 x 1,5 | 85 | 130 | 35714-35716 | 1000 | – | 900 | – | – | – | 200 | – | 164 | 56 | 35 |
404F | 40 | 4/14 x 1,5 | 85 | 130 | 35715-35717 | 1500 | – | 1350 | – | – | – | 200 | – | 164 | 64 | 42 |
405F | 40 | 5/16 x 1,5 | 94 | 140 | 35715-35717 | 1500 | – | 1350 | – | – | – | 200 | – | 173 | 64 | 52 |
404A | 40 | 4/14 x 1,5 | 85 | 130 | 35715-35717 | 1500 | 1200 | 1350 | 1125 | – | – | 200 | – | 164 | 65 | 45 |
454A | 45 | 4/14 x 1,5 | 85 | 130 | 35715-35718 | 2000 | 1650 | 1800 | 1500 | 1500 | 1400 | 210 | – | 165 | 79 | 37 |
455A | 45 | 5/16 x 1,5 | 94 | 140 | 35715-35718 | 2000 | 1650 | 1800 | 1550 | 1500 | 1400 | 210 | – | 169 | 79 | 37 |
504F | 50 | 4/14 x 1,5 | 85 | 130 | 35715-35719 | 3000 | – | 2700 | – | – | – | 180 | – | 172 | 65 | 52 |
505F | 50 | 5/16 x 1,5 | 94 | 140 | 35715-35719 | 3000 | – | 2700 | – | – | – | 180 | – | 172 | 65 | 52 |
505A | 50 | 5/16 x 1,5 | 94 | 140 | 35716-35719 | 3000 | 2500 | 2700 | 2250 | 2250 | 2100 | 180 | – | 168 | 86 | 47 |
506A | 50 | 6/18 x 1,5 | 160 | 205 | 35716-35719 | 3000 | 2500 | 2700 | 2250 | 2250 | 2100 | 180 | – | 240 | 83 | 52 |
606XR | 60 | 6/18 x 1,5 | 160 | 205 | 35718-35711 | 5000 | 4150 | 4500 | 4000 | 3750 | 3500 | 190 | 290 | 240 | 91 | 52 |
706X | 70 | 6/18 x 1,5 | 160 | 205 | 35719-35713 | 6500 | 5400 | 5850 | 4900 | 4875 | 4550 | 230 | 330 | 260 | 115 | 37 |
806X | 80 | 6/18 x 1,5 | 160 | 205 | 32211-35715 | 9100 | 7900 | 8200 | 7500 | 7500 | 6800 | 250 | 350 | 255 | 132 | 52 |
808X | 80 | 8/18 x 1,5 | 220 | 275 | 32211-35715 | 9100 | 7900 | 8200 | 7500 | 7500 | 6800 | 250 | 350 | 324 | 132 | 55 |
906X | 90 | 6/18 x 1,5 | 160 | 205 | 32211-32017 | 10000 | 8650 | 9000 | 8200 | 8200 | 7500 | 310 | 410 | 255 | 132 | 55 |
908X | 90 | 8/18 x 1,5 | 220 | 275 | 32211-32017 | 10000 | 8650 | 9000 | 8200 | 8200 | 7500 | 310 | 410 | 324 | 132 | 55 |
908XR | 90 | 8/18 x 1,5 | 220 | 275 | 32217-32217 | 11200 | 9750 | 15710 | 9200 | 9200 | 8400 | 290 | 390 | 325 | 131 | 74 |
910XR | 90 | 10/22 x 1,5 | 280 | 335 | 32217-32217 | 11200 | 9750 | 15710 | 9200 | 9200 | 8400 | 290 | 390 | 380 | 131 | 74 |
1008X | 100 | 8/18 x 1,5 | 220 | 275 | 32217-32217 | 13400 | 11600 | 12000 | 11000 | 11000 | 10000 | 320 | 420 | 325 | 131 | 74 |
1571X | 100 | 10/22 x 1,5 | 280 | 335 | 32217-32217 | 13400 | 11600 | 12000 | 11000 | 11000 | 10000 | 320 | 420 | 380 | 131 | 74 |
1571XR | 100 | 10/22 x 1,5 | 280 | 335 | 32219-32219 | 14500 | 12600 | 13000 | 11800 | 11800 | 10800 | 300 | 400 | 380 | 147 | 88 |
1110X | 110 | 10/22 x 1,5 | 280 | 335 | 32219-32219 | 14500 | 12600 | 13000 | 11800 | 11800 | 10800 | 400 | 500 | 380 | 147 | 88 |
1210X | 120 | 10/22 x 1,5 | 280 | 335 | 32219-32219 | 15000 | 13000 | 13500 | 13000 | 13000 | 11250 | 490 | 590 | 380 | 147 | 88 |
1510X (1) | 150 | 10/22 x 1,5 | 280 | 335 | 32219-32219 | 15000 | 13000 | 13500 | 13000 | 13000 | 11250 | 500 | 600 | 380 | 147 | 88 |
FAQ:
Q. Are you manufacturer? What is the aim of your company?
A. Yes. CZPT Asia has been producing agricultural and industrial axles and suspensions since the year 2006. Our aim is to
provide only high quality Axles and Suspensions with accesories to global clients but with competitive prices.
Q. Where is your factory?
A. We are located in HangZhou, ZheJiang , China. Welcome to visit us.
Q. How many years have you been in this business line?
A. We have 20 years experience for production of Agricultural and Industrial products, Our products are enjoying good reputation
from more than 20 countries.
Q. What is your brand?
A. ROC is our own brand, CZPT Asia is affiliated to the France CZPT Group (Est. 1971), it is a whole-owned subsidiary
company of France CZPT Group in China.
Q. Can you accept OEM ?
A. Yes, OEM is acceptable, We can sell products without ROC logo.
Q. How do you ensure the quality?
A. We have strict QC process:
1) Before production, Check strictly the raw material quality.
2) During the half production, We check the finished product quality.
3) Before shipment, We test every product and check defects. Any products with defects won’t be loaded.
More details, Please check with our sales team.
Q. What about your M.O.Q ?
A. Our minimum order value is USD500. For smaller order, please check particularly with our sales team.
Q. What is the lead time?
A. Within 40 days for 40ft container. Within 30 days for 20ft container.
Q. What about your payment terms?
A. We accept various terms, including T/T , L/C , Western Union, etc. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Condition: | New |
Axle Number: | According to Requiremts |
Application: | Trailer |
Certification: | ASTM, CE, DIN, ISO |
Material: | Steel |
Samples: |
US$ 30/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What is the role of axles in electric vehicles, and how do they differ from traditional axles?
Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:
Role of Axles in Electric Vehicles:
The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.
In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.
Differences from Traditional Axles:
While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:
1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.
2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.
3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.
4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.
5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.
It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.
How do axle ratios impact the performance and fuel efficiency of a vehicle?
The axle ratio of a vehicle plays a crucial role in determining its performance characteristics and fuel efficiency. Here’s a detailed explanation of how axle ratios impact these aspects:
Performance:
The axle ratio refers to the ratio of the number of rotations the driveshaft makes to the number of rotations the axle makes. A lower axle ratio, such as 3.23:1, means the driveshaft rotates 3.23 times for every rotation of the axle, while a higher ratio, like 4.10:1, indicates more driveshaft rotations per axle rotation.
A lower axle ratio, also known as a numerically higher ratio, provides better low-end torque and acceleration. This is because the engine’s power is multiplied as it goes through the gears, resulting in quicker acceleration from a standstill or at lower speeds. Vehicles with lower axle ratios are commonly found in trucks and performance-oriented vehicles where quick acceleration and towing capacity are desired.
On the other hand, a higher axle ratio, or numerically lower ratio, sacrifices some of the low-end torque for higher top-end speed and fuel efficiency. Vehicles with higher axle ratios are typically used in highway driving scenarios where maintaining higher speeds and maximizing fuel efficiency are prioritized.
Fuel Efficiency:
The axle ratio directly affects the engine’s RPM (revolutions per minute) at a given vehicle speed. A lower axle ratio keeps the engine running at higher RPMs, which may result in increased fuel consumption. However, this ratio can provide better towing capabilities and improved off-the-line acceleration.
In contrast, a higher axle ratio allows the engine to operate at lower RPMs during cruising speeds. This can lead to improved fuel efficiency because the engine doesn’t have to work as hard to maintain the desired speed. It’s worth noting that other factors, such as engine efficiency, aerodynamics, and vehicle weight, also influence fuel efficiency.
Manufacturers carefully select the axle ratio based on the vehicle’s intended purpose and desired performance characteristics. Some vehicles may offer multiple axle ratio options to cater to different driving preferences and requirements.
It’s important to consider that changing the axle ratio can have implications on the overall drivetrain system. Modifying the axle ratio can affect the vehicle’s speedometer accuracy, transmission shifting points, and may require recalibration of the engine control unit (ECU) to maintain optimal performance.
As always, for precise information on a specific vehicle’s axle ratio and its impact on performance and fuel efficiency, it is best to consult the vehicle manufacturer’s specifications or consult with automotive experts.
What are the signs of a worn or failing axle, and how can I troubleshoot axle issues?
Identifying the signs of a worn or failing axle is important for maintaining the safety and functionality of your vehicle. Here are some common signs to look out for and troubleshooting steps you can take to diagnose potential axle issues:
- Unusual Noises:
- Vibrations:
- Uneven Tire Wear:
- Difficulty Steering:
- Visible Damage or Leaks:
- Professional Inspection:
If you hear clunking, clicking, or grinding noises coming from the area around the wheels, it could indicate a problem with the axle. These noises may occur during acceleration, deceleration, or when turning. Troubleshoot by listening carefully to the location and timing of the noises to help pinpoint the affected axle.
A worn or failing axle can cause vibrations that can be felt through the steering wheel, floorboard, or seat. These vibrations may occur at certain speeds or during specific driving conditions. If you experience unusual vibrations, it’s important to investigate the cause, as it could be related to axle problems.
Inspect your tires for uneven wear patterns. Excessive wear on the inner or outer edges of the tires can be an indication of axle issues. Misaligned or damaged axles can cause the tires to tilt, leading to uneven tire wear. Regularly check your tires for signs of wear and take note of any abnormalities.
A worn or damaged axle can affect steering performance. If you experience difficulty in steering, such as stiffness, looseness, or a feeling of the vehicle pulling to one side, it may be due to axle problems. Pay attention to any changes in steering responsiveness and address them promptly.
Inspect the axles visually for any signs of damage or leaks. Look for cracks, bends, or visible fluid leaks around the axle boots or seals. Damaged or leaking axles can lead to lubrication loss and accelerated wear. If you notice any visible issues, it’s important to have them inspected and repaired by a qualified mechanic.
If you suspect axle issues but are unsure about the exact cause, it’s advisable to seek a professional inspection. A qualified mechanic can perform a thorough examination of the axles, suspension components, and related systems. They have the expertise and tools to diagnose axle problems accurately and recommend the appropriate repairs.
It’s important to note that troubleshooting axle issues can sometimes be challenging, as symptoms may overlap with other mechanical problems. If you’re uncertain about diagnosing or repairing axle issues on your own, it’s recommended to consult a professional mechanic. They can provide a proper diagnosis, ensure the correct repairs are performed, and help maintain the safety and performance of your vehicle.
editor by CX 2024-03-26